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Abstract—The amount of collected information on data repos-
itories has vastly increased with the advent of the internet. It
has become increasingly complex to deal with these massive
data streams due to their sheer volume and the throughput of
incoming data. Many of these data streams are mapped into
graphs, which helps discover some of their properties. However,
due to the difficulty in processing massive streaming graphs, they
are summarized such that their properties can be approximately
evaluated using the summaries. gSketch, TCM, and gMatrix are
some of the major streaming graph summarization techniques.
Our primary contribution is devising kMatrix, which is much
more memory efficient than existing streaming graph summariza-
tion techniques. We achieved this by partitioning the allocated
memory using a sample of the original graph stream. Through
the experiments, we show that kMatrix can achieve a significantly
less error for the queries using the same space as that of TCM
and gMatrix.

Index Terms—graph querying , streaming graphs, summariza-
tion

I. INTRODUCTION

Massive-scale datasets are becoming increasingly common
today. The growth of the number of users who are actively us-
ing digital devices connected to the internet has vastly affected
this phenomenon. Also, there lies an interest in researchers
to solve the problems which involve large datasets. Most of
these datasets could be mapped into graphs to extract useful
information, giving rise to the need for processing massive
scale graphs. There are many practical scenarios where mas-
sive scale graphs are applied such as social networks, network
traffic data, and road networks. Large scale dynamic natural
graphs are used by many companies today. Google uses the
PageRank algorithm [1], [2] to map the links between the web
pages. Facebook has a massive graph with trillions of edges
[3], depicting the interactions of each user on the platform.

It is much easier to work with graphs when they are static
and small. However, most of the natural graphs that are
being encountered in the real world are dynamic. It becomes
increasingly complex to handle the graph as the velocity
with which its edges get updated increases. Determining the
properties of streaming graphs is a relatively strenuous task
than static graphs as they are continually evolving. Thus the
traditional graph algorithms cannot be run on streaming graphs
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due to their dynamic nature. High throughput of update queries
requires any other types of queries to be run efficiently and as
fast as possible in an unblocking manner. Therefore if there
is a need for processing the graph while streaming, separate
streaming graph algorithms have to be devised [4].

Since real-world streaming graphs could grow very large in
size, they are often stored as partitions in different machines
over a network rather than in a single location. It is difficult
to evaluate the properties of a graph with high volume and
throughput even after the partitioning process, as the whole
graph would have to be processed despite the partitioning.
Graph summarization is a technique used in dealing with these
massive graphs taking the limitations mentioned above into
account so that important information regarding the underlying
dataset can be inferred easily. In graph summarization, we
reduce the complexity of a graph while retaining only some
of its properties. These summaries often incur an error when
queried due to the loss of information. When the same
algorithm is executed on a graph summary and its original
graph, the two results are expected to be approximately equal.
Here, the error depends on the compression ratio and various
other factors. This tradeoff in accuracy is usually worth it for
real-world graphs such as social networks when considering
the computational cost incurred in obtaining exact answers.
Most of the time, the cost of obtaining an exact solution is so
high that it is impossible to do so even if the need arises.

Being applied in a wide range of industrial and research
applications, realtime property evaluation of streaming and
dynamic natural graphs is a critical requirement in many
scenarios. Graph summarization plays a significant role in
this as it reduces the computational resources required to
evaluate the properties in a rather massive scale streaming
graph. It would be beneficial for many sectors if the process
of summarizing streaming graphs were made efficient.

In this work, we propose an improved streaming graph sum-
marization technique; kMatrix. It can outperform the existing
state of the art summarization sketches by efficiently using
the available memory to answer the queries more accurately.
We also show that kMatrix is generally faster than the other
sketches in handling the graph streams. Despite the number of
methods that have been devised for streaming graph summa-
rization, they still lack the accuracy to be used in most real-
world scenarios [5]. Our motivation in improving the existing



sketching techniques lies in increasing the efficiency while
maintaining the same resource constraints of the application
domains, such as real-time property evaluation of the social
networks where streaming graph summarization is critical.

The remainder of this paper is organized as follows. We
explore the related work for this research in Section II. In
Section III and IV, we will focus on the methodology and the
implementation respectively. We will summarize all the results
obtained during the experiments in Section V. Section VI will
address the remaining work to be done before deploying the
kMatrix in a real world application. We will conclude the paper
in Section VII, highlighting the importance of this work to the
graph summarization domain.

II. RELATED WORK

Summarizing a graph can have many benefits [6] apart
from the speedup of graph algorithms and queries, such as,
reduction of data volume and storage [7], visualization [8],
[9], noise elimination [10], privacy preservation [11]. Graph
summarization has a wide range of industrial and research
applications as well. Some of them are clustering [12], classi-
fication [13], community detection [14], outlier detection [15],
[16], pattern set mining [17] and finding sources of infection
in large graphs [18]. Throughout this work, our aim lies in
query optimization through graph summarization.

Streaming graph summarization is much more complex
than summarizing a static graph due to the constant data
flow. Since the underlying graph is updated continuously, the
summarization process also has to be done in realtime. Almost
any static graph summarization technique can be used with a
streaming graph snapshot in a specific timestamp. However,
mining information using aggregate time snapshots of data
could prove to be a less than ideal solution when considering
massive data streams. Thus sophisticated sparsification tech-
niques have to be derived in order to summarize streaming
graphs.

A. CountMin

CountMin [19] is a 2-dimensional data structure that is
used for frequency approximation queries. It has a width of
w = [e/e] and a depth of d = [In(1/§)]. Here the e is the
base of the natural logarithm while ¢ and § are user-specified
constants. The underlying idea is to hash the aggregated
frequencies of the edges using multiple hash functions into
predefined blocks, as indicated in Fig. 1. Any incoming edge
e; at timestamp ¢ will get hashed into each row using its hash
function hy. A CountMin sketch will have a fixed memory
allocation of w - d throughout its lifespan. Irrespective of the
volume of the data stored in the sketch, the initial memory
allocation will not change. Thus the accuracy of the queries
will decrease as more and more data is inserted into the sketch.
Despite the weaknesses, CountMin can be considered as a
good generalized summarization sketch as many other current
techniques are geared towards specific graph computation
scenarios. However, the CountMin approach is not restricted
to streaming graphs but other applications as well [19].
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Fig. 1. CountMin sketch [20]
B. gSketch

gSketch [20] is an extension of CountMin data structure.
But unlike the CountMin sketch, this is specifically geared
towards summarizing graph streams. gSketch is based on one
of the below two assumptions.

o A sample of the graph stream is available.
¢ Samples of both the graph stream and the query workload
are available.

In CountMin, one global sketch is created for the entire
stream. By doing so, it fails to take advantage of any struc-
tural properties present in the graph stream. gSketch tries
to avoid this by considering the underlying structure of the
graph stream using a sample. It then proceeds to partition its
allocated space, as indicated in Fig. 2. The sum of the widths
of the partitions wy and ws is equal to the original width of the
sketch, w. The goal of this partitioning step aims to maintain a
sufficient frequency uniformity within each localized sketch in
a way such that the combined error of the quarry estimations
over the entire graph is kept at a minimum.
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Fig. 2. gSketch sketch
C. TICM

A disadvantage posed by all the approximate frequency
count sketches like CountMin or gSketch is that they do



not store the locality of the nodes. Therefore CountMin and
gSketch cannot be used for conditional node queries or queries
involving node connectivity. If these queries were to be run,
the locality of the nodes has to be retained in the graph
synopses. TCM [21] aims to solve this issue by storing the
connectivity of the nodes in its data structure. TCM can
summarize both node and edge information in constant time.
Thus, it can answer a wide range of queries, unlike its
predecessors. The structure of a TCM sketch is depicted in
Fig. 3. In here w is the width of the sketch while d is the
number of the hash functions. An edge (¢, j) of a graph stream
will get hashed into the bucket at the location (h..(7), h-(5))
in the rth layer. TCM sketch could be considered as one of
the pioneering works in summarizing data streams, which is
directly related to our work presented in this paper.
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Fig. 3. TCM sketch [22]

D. gMatrix

The functionality of gMatrix [22] is very similar to the TCM
sketch. However, gMatrix considers several aspects which the
TCM sketch does not address.

o Reverse hashing queries through pairwise independent
hash functions.

o Alternative options to extend sketch and space-saving
synopses.

III. METHODOLOGY

Through this research, we propose kMatrix, which is an
improvement over the traditional gMatrix algorithm. The idea
behind the kMatrix is to partition the 3-dimensional frequency
matrix using a sample of the original graph steam as proposed
in gSketch [20]. This idea has already been discussed in the
TCM [21] work to a certain degree. However, we explore
this approach extensively with the gMatrix data structure,
which can answer reachability queries, unlike the TCM sketch.
kMatrix can also answer the reachability queries, which makes
it suitable for more application scenarios than TCM. The
significance of our approach is that kMatrix can answer all
the queries that gMatrix is able to with much higher accuracy

while occupying the same amount of space as its counterpart
gMatrix sketch.

A. kMatrix

Let a stream be, G = (e, €3, . .., €,,). This can be mapped
to a graph, G = (V, E) where V is the set of nodes and FE is a
set of edges as {e1, e, ..., emn . We can summarize this graph
using a 3-dimensional matrix sketch [22]. The straightforward
choice would be to use a sketch similar to the one shown in
Fig. 3. An edge, (i,j) € E will be hashed onto each layer
of the sketch with has functions, h,, r € {1,...,d}. The
coordinate of the cell where the edge value is preserved will
be (h,(i), h.(j)). Since the kMatrix aims to use the gMatrix
sketch’s advantages over TCM, the hash functions should be
pairwise independent of each other.

However, by constructing a global sketch for the entire
graph stream, some critical information about the structural
properties of the underlying graph is dismissed. It is possible
to improve the performance of a sketch by retaining some
of these properties. Sketch partitioning [20] is one of the
techniques that allow us to improve the sketch using the
properties of the graph stream. In sketch partitioning, the
global sketch is partitioned using a sample of the original
graph stream such that it is possible to maintain a sufficient
frequency uniformity within each partition. In this work, we
use the sketch partitioning process discussed in gSketch to
increase the accuracy of the queries further.

Fig. 4 depicts the high-level view of kMatrix sketch after
partitioning. Here, the sum of the memory occupied by all the
localized sketches is equal to the memory allocated for the
initial global sketch. The proceeding section will explain the
partitioning algorithm in detail.
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Fig. 4. kMatrix sketch

Partitioning Algorithm: Consider that the original sketch
is partitioned into i sub-sketches. Let F(S;) be the sum of
the edge frequencies in the ith sketch and w; be its width. If
(m,n) is an edge in the ith sketch, let f(m,n) and f(m,n)
be its frequency and expected frequency (1) respectively.

z F(Si) — f(m,n)

f(m,n) = (1)

wj

Then the expected relative error of the edge (m,n) is given
by (2).
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The overall relative error F; of the sketch can be expressed

as the sum of the expected relative errors of all the edges.

> e(mn) (3)
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Let the average frequency of a vertex m be fv(m) and the
estimated out-degree be d(jn Then the average frequency
of the vertex would be f,(m)/d(m). Therefore the total
estimated frequencies of the partitioned sketch S; can be
expressed as (4).

F(S)= Y.  fulm) )
meS; ;meV
According to (2), (3) and (4), the overall relative error of
the sketch can be simplified to (5).
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d(m) in the numerator accounts for the fact that O(d(m))
edges are coming out of the vertex m.
When a sketch of width w is partitioned into two sketches
of widths w; and ws, the total error can be expressed as F =
F1 + Es. Let w; = wsy. Then,
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The (6) can be further simplified as,

E' = Ew, + Z d(m) (7)
meS1US2
where the value of E’ is,
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m)/d(m) <=5 fo(m)/d(m)
Thus it can be shown that the overall error in (7) can be min-
imized by choosing the smallest E’ according to (8). Therefore
the underlying idea behind the partitioning algorithm is to
choose a data sample of the original stream and then repeatedly
partition the available space between the vertices in the sample
according to (8). After this partitioning phase, the streaming
can begin and the edges that represented the vertices in the
sample are put into their respective partitioned sketches.

A separate data structure has to be used in order to track
the vertices belonging to different localized partition. How-
ever the extra cost of storing this information is negligible
when compared with the advantages obtained with the sketch
partitioning.

meESy

IV. IMPLEMENTATION
A. Experimental Setup

The implementation mainly consists of two components; the
test suite and the sketching algorithms. The entire code-base
has been written in Python 3.8. All the tests were run on a
12-core Ryzen 3900 machine with a base clock of 3.1GHz and
32 GB RAM. However, only one core was utilized in running
the tests.

A sample of 30,000 edges has been extracted from relevant
datasets for initializing kMatrix at the beginning of each
experiment. This sample stream has been obtained using
reservoir sampling.

B. Datasets

Three datasets were chosen to carry out the benchmarking
process in this research. These were chosen to represent
different application domains.

a) unicorn-wget [23]: unicorn-wget is a dataset created
from capturing the packet information of the network activity
of a simulated network. This dataset was created at Harvard
University. The dataset consists of 5 parts. From them, Hour-
Long Wget Benign Dataset (Base Graph) which consist of
17,778 nodes and 2,779,726 edges was chosen for the exper-
iment. We filtered 10% of the edges using reservoir sampling
for our experiments.

b) email-EuAll [24]: This data was extracted using email
data from a large European research institution. The dataset
consists of emails sent out in a period of 18 months. Each data
item contains sender, receiver and the time of the origination
of each email. The dataset consisted of 265,214 nodes and
420,045 edges [25].

c) cit-HepPh [26]: cit-HepPh citation graph is from the
e-print arXiv regarding high energy physics phenomenology.
It has 34,546 papers (nodes) and 421,578 citations (edges).
We used the full dataset in our experiments.

C. Evaluation Metrics

1) Average Relative Error (ARE): The relative error er(Q)
of a query @ is defined as (9) where f/(Q) and f(Q) is
the estimated frequency and the true frequency of the query
respectively.

Q) -fQ _ FQ
vQ=""r0 [0

Given a set of m queries, {Q1,.....,Q.,}, the average
relative error is defined by taking the average of the relative
error of all queries Q; for i € [1,m)].

k
e(Q) = > i1 er(Qi)
m
2) Number of Effective Queries (NEQ): A query is said to
be effective if the error, f’(Q) — f(@), < Gy, where G is a
predefined value. The number of effective queries is defined
as,

-1 9

(10)
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V. RESULTS

This section will describe all the experiments conducted to
measure the effectiveness of kMatrix against existing stream-
ing graph sketching techniques.

We have considered CountMin, gSketch, TCM, gMatrix and
kMatrix sketches in our experiments. These sketches can be
categorized into two groups depending on the type of queries
they are able to answer.

1) Type I - The sketches which support only the edge

frequency queries, i.e. CountMin and gSketch.

2) Type II - The sketches which support many graph queries

in general, i.e. TCM, gMatrix and kMatrix

Since Type I sketches cannot answer anything other than
edge frequency queries, we have only included Type II
sketches in our comparisons against kMatrix.

A. Build-time

Here we investigated the time to add the entire dataset to
the sketch. The sketches were allocated a constant memory
size of 1 MB, and the number of hash functions was set to
d = 7. The edges were streamed at the maximum through-
put of each sketch. Therefore this experiment gives an idea
about the average insertion rate of edges for each sketch. A
minor drawback of kMatrix is that it takes some time for its
initialization stage. However, this initialization time becomes
negligible compared to the advantage that kMatrix receives
over time due to its faster streaming rate. In both Fig. Sa
and Fig. 5c, it has managed to outperform other sketching
techniques by a significant margin. In Fig. 5b, kMatrix has
shown comparable performance to gMatrix. With the increase
of the data contained within the sketch, the number of hash
collisions in TCM and gMatrix has grown over time, increas-
ing the computational cost of inserting a new edge. kMatrix
has maintained a relatively lower build time as a result of its
lower number of hash collisions due to the sketch partitioning
before inserting the edges.

B. Edge queries

This experiment investigates how accurately the kMatrix can
answer the edge queries after the summarization process. For
this, we let our datastream get summarized into the sketch
and then queried the frequency of different edges chosen at
random. The experiment was repeated for each sketch for
the sizes, 200 KB, 300 KB, 400 KB and 512 KB while
keeping the number of hash functions at d = 7. We have used
average relative error and the number of effective queries as
the evaluation matrices for this experiment.

1) Average Relative Error: kMatrix showed significantly
low ARE than all the other sketches for the three datasets
we chose. The reason is that kMatrix can maintain frequency
uniformity within each partition, making kMatrix relatively
more immune to hash collisions than TCM and gMatrix. It
is clear from the experimental evidence shown in Fig. 6 that
kMatrix vastly outperforms the other state of the art sketching
techniques. The superiority of our solution is more apparent
when the allocated memory is low.
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2) Number of Effective Queries: The number of effec-
tive queries for each sketch was calculated by querying
the sketches against 10,000 edges chosen through reservoir
sampling from the original dataset. kMatrix has surpassed the
accuracy of both TCM and gMatrix for all the scenarios that
we have tested. The results for cit-HepPh in Fig. 7c shows
that kMatrix has been able to effectively answer a significantly
larger number of queries where the other sketches failed due to
hash collisions. This is due to the sketch partitioning process
where kMatrix try to minimize the hash collisions in contrast
to TCM and gMatrix.

VI. FUTURE WORK

We have only considered square matrices for the kMatrix
implementation in this work. It is worth exploring the accuracy
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tradeoff for the non-square matrices as well. There are multiple
aspects such as sliding windows and data partitioning across
machines, that should be considered before the kMatrix sketch
can be used in a practical application. In addition, we have
to further test the performance of kMatrix concerning other
criteria such as heavy node/edge queries.

VII. CONCLUSION

kMatrix is a new streaming graph summarization technique
proposed through this research. It can answer queries with
a much lower average relative error with the same amount
of memory compared to the existing state-of-the-art sketching
techniques, TCM and gMatrix. Decreasing the error of the
queries answered by the summarized sketches will have a
significant impact on all the application scenarios that require
the use of graph summarization. The dramatic decrease in the
error of the queries shown by the kMatrix makes it a better
replacement for any current application domain where TCM
or gMatrix has been utilized. We have benchmarked kMatrix
using three datasets in different application domains to test
out its performance. We believe that the experimental results
show the superiority of the proposed solution in comparison
to the existing steaming graph summarization techniques.
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