
Received 3 October 2022, accepted 4 November 2022, date of publication 14 November 2022,
date of current version 28 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221941

Exploring Machine Learning and Deep Learning
Approaches for Multi-Step Forecasting in
Municipal Solid Waste Generation
OSHAN MUDANNAYAKE , DISNI RATHNAYAKE, JEROME DINAL HERATH,
DINUNI K. FERNANDO , AND MGNAS FERNANDO, (Member, IEEE)
University of Colombo School of Computing, Colombo 00700, Sri Lanka

Corresponding author: Dinuni K. Fernando (dkf@ucsc.cmb.ac.lk)

This work was supported in part by the University of Colombo School of Computing.

ABSTRACT Municipal Solid Waste (MSW) management enact a significant role in protecting public health
and the environment. The main objective of this paper is to explore the utility of using state-of-the-art
machine learning and deep learning-based models for predicting future variations in MSW generation for a
given geographical region, considering its past waste generation pattern. We consider nine different machine
learning and deep-learning models to examine and evaluate their capability in forecasting the daily generated
waste amount. In order to have a comprehensive evaluation, we explore the utility of two training and
prediction paradigms, a single-model approach and a multi-model ensemble approach. Three Sri Lankan
datasets from; Boralesgamuwa, Dehiwala, and Moratuwa, and open-source daily waste datasets from the
city of Austin and Ballarat, are considered in this study. Our results show that Austin and Ballarat datasets
got lower error percentage values of 8.03% and 8.3% for Linear Regression and Random Forest models
respectively. In Sri Lankan datasets, Random Forest model outperformed other potential models in terms of
MAPE by 28.02% to 36.89%. In addition, we provide an in-depth discussion on important considerations to
make when choosing a model for predicting MSW generation to enhance the study.

INDEX TERMS Waste management, time series, machine learning, deep learning.

I. INTRODUCTION
Daily human activities are directly and indirectly linked to
solid waste generation. Globally, there is around 2.01 billion
tons of Municipal Solid Waste generated per year, of which
at least 33% is not managed in an environmentally safe
manner [1]. Poor management and unsafe disposal of solid
waste pose a threat to both the environment and human
health. The management of MSW faces various challenges
related to urbanization, climate change [2] and population
growth, which adds complexity and dynamics to the prob-
lem. The attentiveness of urban waste requires suitable dis-
posal facilities, infrastructure and transport [3]. Further, main
tasks and fundamental causes of managing solid waste are
lack of waste sorting, poor waste collection mechanisms
and absence of public engagement in waste management.
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Moreover, managing solid waste is a crucial phenomena in
both developing and developed countries as it directly impact
health and hygiene related issues.

Due to rapid urbanization and population growth, annual
global waste generation is expected to increase to 3.4 billion
tons over the next 30 years, up from 2.01 billion tons in
2016 [4]. Thus, the prediction and analysis of MSW gen-
eration can provide scientific decision-making information
for the environmental planning of urban areas and overall
quantity control to achieve the reduction, resource, and harm-
lessness of MSW [5].

It is obvious that proper tracking and waste collection
mechanisms are needed to quantify and predict waste gen-
eration for a sustainable environment. In particular, the abil-
ity to forecast the quantity of waste generated in future
would alleviate the burden of managing solid waste, where
authorities could factor in future predicted variations in solid
waste generation into decision making at the present time.
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Thereby effectively utilizing resources for waste collection,
sorting and other waste management practices. Overall, the
ability to accurately estimate future waste generation rates
can help motivate gap analysis in existing waste management
and pave the way for better strategic planning.

Against this backdrop, in this work we aim to explore the
utility of using state-of-the-art machine learning and deep
learning-based models for the propose of predicting future
variations in solid waste generation for a given geographical
region, considering its past waste generation pattern.

The work in [6] and [7] have already provided a study
on comparing machine learning and deep learning models
for MSW-prediction, however unlike in the study of [6] we
consider nine different machine learning and deep-learning
models from the simplest Linear Regression model to state-
of-the-art deep learningmodels like Transformers [8] in order
to evaluate the suitability of eachmodel with daily solid waste
prediction. Additionally, unlike in the study of [7] we con-
sider daily solid waste data from different geographical areas;
Sri Lanka (Boralesgamuwa, Dehiwala, Moratuwa), City of
Austin in Texas in USA, and City of Ballarat in Australia.

Furthermore, we consider the weekly seasonal patterns
especially in Ballarat and Austin datasets and explore a
multi-model ensemble approach which specifically gives
additional focus to the weekly seasonal patterns that exist
within the waste generation of each day of the week.

In this work we evaluated the predictive power of nine fore-
casting models, five machine learning-based models–Linear
regression [9], Auto ARIMA [10], Light GBM [11], Ran-
dom Forest [12], Prophet [13] and four deep learning-based
models–Long short-term memory(LSTM) [14], Temporal
Convolutional Network(TCN) [15], Transformer [8], and
N-Beats [16]. We considered these models because they are
used in many different time series forecasting studies [17],
[18], [19], [11], [15], [20], [21], [22], [23], [24], [25].
We explored two trains of through with respect to training
models, a single model approach where a single predictive
model is trained to predict solid waste generation similar to a
typical time series forecasting task, and amulti-model ensem-
ble approach where seven different models of the same type
were trained and used separately for each day of the week.
We explored these two options due to the seasonal pattern
observed in solid waste generation in Austin and Ballarat
datasets, and to identify if there would be any increment
in predictive power or decrease in resource utilization in
terms of training smaller deep learning-based models for the
ensemble.

In this work, we compared the prediction ability of these
models mentioned above to forecast daily waste amounts
for datasets chosen from three geopolitically diverse loca-
tions (i.e., Australia, USA and Sri Lanka). We consider
five datasets across these regions, a dataset from Ballarat,
which is the third largest city in Victoria, Australia, another
dataset from Austin, capital of U.S. state of Texas and also
three datasets collected from different Municipal and Urban
Authorities in Sri Lanka–Dehiwala, Boralesgamuwa, and

Moratuwa. We applied both single-model and multi-model
approaches to all nine models we used in this study. The
models were evaluated based on the Root Mean Square Error,
Mean Absolute Error, Mean Absolute Percentage Error val-
ues. In a nutshell our contribution can be summarized as
follows,

• We explore the utility of five machine learning-based
predictive models and four state-of-the-art deep
learning-based forecasting models for the purpose of
predicting solid waste generation.

• We compare the predictive capability of these models
extensively, across five datasets. Sri Lankan datasets
are from three local authorities in Colombo; Boralesga-
muwa, Dehiwala, andMoratuwa. Additionally, two open
source datasets from Ballarat, Australia and Austin,
Texas.

• We explore the utility of two training and predic-
tion paradigms of using these models, a single model
approach and a multi-model ensemble approach.

• Finally we provide extensive evaluation by discussing
three important points that may be useful for employ-
ing models for predicting solid waste generation–1) the
seasonality of data 2) choosing between a single-model
or multi-model approach and 3) choosing between a
machine learning or deep learning-based model.

Organization: The rest of the paper is organized as fol-
lows. Section 2 provides related work of solid waste pre-
diction and time series forecasting using machine learning
techniques. In Section 3, we explore the problem statement.
Section 4 describes the datasets and data pre-processing steps
carried out in this work. In Section 5, we discussed the
methodologies of the study. Section 6 presents our evalu-
ation for forecasting solid waste generation in this study
including experimental setup, experimental results and dis-
cussion. In Section 7, we presented the conclusions of the
study.

II. RELATED WORK
This section discusses background details of solid waste pre-
diction and time series forecasting using machine learning
techniques.

A. SOLID WASTE PREDICTION
Municipal Solid Waste generation is becoming one of
the crucial issues with the rapid development around the
world [26]. Presently, the global waste generation of 3.3 mil-
lion tonnes per day is becoming unmanageable, and this
amount is expected to rise up to 11 million tonnes per
day by 2100 [27]. Accurate forecasting and prediction of
waste are very important because the best strategies for
waste management and planning are highly dependent on
waste quantification [28], [29].

According to various studies, Municipal Solid Waste
forecasting methods can be mainly classified into five cat-
egories [30]. They are statistical analysis [31]; regression
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analysis [32]; material flow analysis [33]; time series
analysis [34]; and artificial intelligence [35], [36], [37],
[38]. However, each and every model or method have their
own merits and demerits comparatively. Among them, the
artificial intelligence model has been gaining popularity in
the forecasting of the generation of Municipal Solid Waste
due to its high flexibility and proven prediction capabilities
compared to the other conventional methods, like regression
analysis, time series analysis, [30], [37], [38], [39], [40], [41]
etc.

B. MACHINE LEARNING FOR TIME SERIES FORECASTING
Statistical time series modeling is widely used in many pre-
diction and forecasting tasks [13], [42]. Autoregressive Mov-
ing Average(ARMA) and Autoregressive Integrated Moving
Average(ARIMA, which is a generalization of ARMA) mod-
els are widely used to fit to the time series data either to better
recognize the data or to forecast data in the series. [43] has
analyzed, compared and selected the best time series model
to forecast solid waste generation for the next years in the
city of Arusha in Tanzania among these two models ARMA
and ARIMA, and Exponential Smoothing models. The result
showed that ARIMA(1, 1, 1) outperformed ARMA model
in terms of MAPE, MAD and RMSE measures. [44] also
studied the best time series model to forecast the amount of
solid waste generation in city of Tehran. Monthly amount of
solid waste data collected by the city authorities from year
2009 to 2014 was used in the study. The result showed that
ARIMA(2, 1, 0) outperformed other ARIMA models like
ARIMA(0,1,1), ARIMA(1,1,1) to forecast the solid waste
generation for the coming years. [45] developed a suitable
ARIMA model, on the basis of different statistical param-
eters, in order to forecast healthcare waste quantity from
the hospitals of Garhwal region of Uttarakhand, India. [46]
aimed in selecting and evaluating several methods like
regression(Life Cycle Assessment of Integrated Waste Man-
agement (LCA-IWM) (Available at http://www.lca-iwm.net)
and time series modeling methods(ARIMA and Seasonal
Exponential Smoothing(SES)) for Municipal Solid Waste
forecasting in a medium-scaled Eastern European city of
Kaunas, Lithuania, with respect to affluence-related and sea-
sonal impacts in the study. For the time series analysis, the
combination of ARIMA and SES techniques were found to
be the most accurate. [47] used ARIMA model in order to
explore the dynamics of solid waste generation and also fore-
casted monthly solid waste generation in Kumasi Metropoli-
tan Area of Ghana. The analysis indicated that ARIMA(1,
1, 1) was the best model for forecasting solid waste gener-
ation in Kumasi Metropolitan Area. [48] conducted a study
to evaluate the performance of various statistical modeling
methods in order to forecast medical waste generation of
Istanbul,in Turkey. ARIMA(0,1,2), showed a best prediction
performance compared to Support Vector Regression, and
Grey Modeling (1,1) in the annual medical waste genera-
tion from 2018 to 2023. In the study of [47] monthly solid
waste generation data from year 2005 to 2010 was used

while [48] used historical waste data from 1995 to 2017.
In both studies, ARIMA showed the best forecasting
performance.

In several recent studies, Artificial Neural Network(ANN)
was trained and tested to model waste generation. [49] pre-
dicted solid waste generation rates using ANN and Mul-
tiple Linear Regression(MLR) in Fars region of Iran. [50]
used ANN model to predict industrial solid waste genera-
tion and then compared the value with the results obtained
from an ANFIS (Adaptive Neuro-Fuzzy Inference System)
model. [38] compared six ANN and ANFIS based models to
evaluate and determine the effectiveness in Municipal Solid
Waste forecasting. According to the results obtained, GA-
ANN(i.e. [38] used genetic algorithm techniques to deter-
mine the optimal biases and the weights of the ANN, instead
of using the back-propagation optimization.) was found to
be the most accurate model among the six models. [40] ana-
lyzed and compared ANN and ARMA to predict the weekly
amounts of solid waste generated by individuals in fourteen
households in the residential area of Kator in Juba city.
According to the literature, many studies have successfully
applied ANNs in the time series analysis and forecasting of
solid waste.

There are many other machine learning models were used
for time series forecasting. LSTM is a common candidate
in time series forecasts, in many recent studies [22], [23],
[24], [25]. The LSTM model is the elegant recurrent neural
network variant, which uses the purpose-built LSTMmemory
cells to represent the long-term dependencies in time series
data [51]. [52] aimed at the temporal variation of MSW gen-
eration in their study, and a LSTM neural network consisting
of LSTM layers and a dropout layer was established and
optimized for forecasting MSW generation. To have better
illustrate of the accuracy and reliability of the LSTM neural
network, an ARIMA model and a conventional ANN model
was used to forecast Municipal Solid Waste. Results proved
that LSTMneural network’s superior capability in forecasting
solid waste.

[53] have focused on a comparative study to discern the
performance of the ANN model compared to the conven-
tional regression approach for forecasting the mean monthly
total ozone concentration over Arosa, Switzerland. Also, [54]
proposed a hybrid model that combines a linear regression
model and deep belief network model for the prediction of
time series data. [12] have mentioned that random forest time
series modeling provides enhanced predictive ability over
existing time series models for the prediction of infectious
disease outbreaks.

Reference [11] showed in their experiments on multiple
public datasets, that LightGBMspeeds up the training process
of conventional gradient boosting decision tree by up to over
20 times while achieving almost the same accuracy. Refer-
ence [55] show that the robustness of the LightGBMmodel is
better than the othermethods like Gradient BoostingDecision
Tree algorithm, in their study of cryptocurrency price trend
forecasting.
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Some recent studies of time series forecasting used state-
of-the-art machine learning models like Facebook Prophet,
TCN which have outperformed statistical time series mod-
eling methods like SARIMA, ARIMA, etc [17], [18], [15],
[19], [20], [21].

III. PROBLEM STATEMENT
In this work, we explore the feasibility of state-of-the-art
machine learning and deep learning-based predictive models
for the purpose of accurately predicting the daily amount
of solid waste generated within a designated geographical
authority. The ability to accurately predict solid waste gen-
eration multiple days into the future would be helpful for
authorities to maximize landfill diversion and better utilize
resources to help manage proper disposal and logistics [33],
[56], thereby effectively reducing waste management costs
and increasing operational efficiency.

We model this problem as a uni-variate time series fore-
casting task, where the objective at time T is to predict
the daily amount of solid waste for k days into the future
(i.e., ŶT = [ŷT+1, ŷT+2, . . . , ŷT+(k−1), ŷT+k ]) based on the
amount of daily solid waste generated in the past n days (i.e.,
XT = [xT−n, xT−(n−1), . . . , xT−1, xT ]). In our formulation we
denote ŶT as the predictions made by the model and YT =
[yT+1, yT+2, . . . , yT+(k−1), yT+k ] as the actual solid waste
amounts generated between the T th day and (T + k)th day.

IV. DATASETS AND DATA PREPROCESSING
In this section, we describe the datasets and data preprocess-
ing steps carried out in this work.

A. DATASETS
We utilized five different datasets of daily waste collected in
different cities (shown in Table 1). This includes two open
source datasets from Ballarat, Australia and Austin, Texas.
Ballarat is primarily a residential area, along with significant
industrial, commercial and rural areas. It is a city in the
Central Highlands of Victoria, Australia. Austin is the most
sub urban major metro in Texas, United States with a strong
economy. Additionally, we also utilized datasets from three
distinct local authorities in Sri Lanka, which is a develop-
ing/emerging country with a lower-middle income economy.
Sri Lankan datasets are from three local authorities in

Colombo, Sri Lanka. Colombo is the commercial capital and
the largest city of Sri Lanka in terms of population. The urban
area of Colombo extends well beyond the boundaries of a sin-
gle local authority, encompassing other municipal and urban
councils. In this study, we used the daily collected waste
amounts from the Boralesgamuwa Urban Council, Dehiwala
Mount Lavinia Municipal Council and Moratuwa Urban
Council. We found that the Sri Lankan datasets contained
many missing values due to the irregular waste collection
and reporting of the data by the waste collection authorities.
The reason to present three data sets from Sri Lanka as one
geographical region is that variations of the results of Borales-
gamuwa, Moratuwa, and Dehiwala are slightly similar and

these three regions are geographically not varied and located
in same proximity.

1) BALLARAT, AUSTRALIA DATASET
Ballarat, Australia Municipal Solid Waste dataset [57] con-
tains the daily statistics of garbage collection in the City of
Ballarat. It includes date(July 2000 - March 2015), number
of garbage bins collected, tonnes of waste collected, and area
of collection. For our study, we have extracted the tonnes of
waste collected per day.

2) AUSTIN, TEXAS DATASET
Austin, Texas Municipal Solid Waste dataset [58] contains
waste collection information based on several variables.
It includes the dailyMunicipal SolidWaste amount(in tonnes)
from January 2003 to July 2021 in city of Austin, Texas.
In this studywe have extracted only the Report Date and Load
Weight variables. Then we calculated the summation of Load
Weight per Report Date.

3) BORALESGAMUWA URBAN COUNCIL DATASET
Boralesgamuwa Urban Council’s Municipal Solid Waste is
the first Sri Lankan region dataset consisting of 2541 data
points. It contains the daily Municipal Solid Waste amount
(in kg) from January 2012 to December 2018. Municipal
Solid Waste amount in the Boralesgamuwa Urban Council
area varies from 3741.3kg to 89580kg from the year 2012 to
2018.

4) DEHIWALA MOUNT LAVINIA MUNICIPAL COUNCIL
DATASET
Dehiwala Mount Lavinia Municipal is the second Sri Lankan
Municipal SolidWaste dataset consisting of 2534 data points.
It includes the daily Municipal Solid Waste amount(in kg)
from January 2012 toDecember 2018.Municipal SolidWaste
amount in the Dehiwala Mount Lavinia Municipal Council
area varies from 3600kg to 39487kg from the year 2012 to
2018.

5) MORATUWA URBAN COUNCIL DATASET
Moratuwa Urban Council Municipal Solid Waste is the
third Sri Lankan dataset which contains 1376 data points.
It includes the daily Municipal Solid Waste amount(in kg)
from January 2012 toDecember 2018.Municipal SolidWaste
amount varies from 590kg to 51544kg from the year 2014 to
2018 in the Moratuwa Urban Council area.

B. DATA PREPROCESSING
This section present the data preprocessing steps. We uti-
lized a machine learning pipeline consisting of three main
preprocessing steps. First, we removed the outliers. Then
we completed the datasets for a specific period by imputing
the missing values. We carry out data imputation by filling
in missing values with estimated values based on available
data [59], [60], [61]. Finally, we split the data taking 70% as
the training data and the remaining 30% as the testing data.
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TABLE 1. Dataset details. SD refers to the Standard Deviation of daily solid waste generated.

TABLE 2. Grid search values of XGBoost used for data imputation.

In the following section we discuss the data imputation steps
in more detail.

1) IDENTIFYING AND DEALING WITH THE MISSING VALUES
We found that training a machine learning model on exist-
ing data is the best way to impute missing values in this
study [62], [63]. We opted for a supervised learning approach
with lag features to use the available data from the entire
dataset to train a model and impute the missing values instead
of utilizing a time series model such as ARIMA which could
only use the previous values to impute a particular missing
value. We believe that the supervised learning approach is
much superior to the alternative for datasets like Moratuwa
where more than 10% of the values had to be imputed.
We selected the XGBoost model [64] for this task, where the
predictions made by the model for a corresponding missing
data instance was used to fill in that sequential position in
the time series.The XGBoost algorithm can identify a best
way to combine the individual variable context informa-
tion with those about variables efficiently. We chose a grid
search to determine the parameters and the number of lag
features of the model that could best fit the existing data.
The range of each parameter of the grid search is depicted
in Table 2. We also tried a initial attempt for imputing val-
ues through an ARIMA model by treating each dataset as
a series of values. However, this made imputing missing
values that appeared early in the series difficult as only the
data before the missing value could be used to train the
model.

After the grid search, we chose twomodels for each dataset
based on the Root Mean Square Error of the models in order
to satisfy the following conditions.

• Model I - The model with the lowest RMSE value was
chosen as the main imputation model when sufficient
data for the lag features preceding the current missing
point in the series is present, this would result in better
imputation due to the presence of optimal number of lag
features.

• Model II - There may be cases where the first missing
value in the dataset does not have sufficient data preced-
ing it to create the lag features ofModel I. Then a second
model (i.e., Model II) was chosen for these scenarios
which requires fewer lag features than the number of
available values used forModel I.

The chosen hyperparameters for imputing data in each
dataset are listed in Table 3.

V. METHODOLOGY
In this work we explore two machine learning-based pre-
diction paradigms, a single-model approach and a multi-
model [65], [66]. Additionally, we explore the utility of five
machine learning-based time series prediction models and
three state-of-the-art deep learning-based time series fore-
casting models. In this section, we explain our rationale
behind exploring these two approaches and an overview of
the models utilized in this work.

A. IMPLEMENTATION APPROACHES
We consider two different approaches in utilizing machine
learning and deep learning-based models for this predictive
task, a single-model approach and a multi-model approach.

1) SINGLE-MODEL APPROACH
A single predictive model is trained to predict solid waste
generation–similar to a typical time series predictive task.
The entire dataset is split into two sets, a train set and a test
set, where both sets comprise of a continues stream of data.
A given model is trained on the train set and performance is
compared using the test set.

2) MULTI-MODEL ENSEMBLE APPROACH
During our data analysis, we found clear weekly seasonal
patterns as shown in examples for the Ballarat and Austin
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FIGURE 1. Weekly pattern of the daily waste data in city of ballarat.

FIGURE 2. Weekly pattern of the daily waste data in city of austin.

shown in Figures 1 and 2 respectively. As shown in these fig-
ures in both these datasets, we observe comparatively lower
values for the weekends where as values for weekdays follow
a tentative weekly pattern.

This observation prompted us to explore a multi-model
approach for this predictive task. Instead of predicting future
solid waste generation using a single model, we trained seven
models of similar architecture to predict the waste generation
of each day in the week. The distinction is that we consider
each separate day in a week as a different time series by
grouping past solid waste generation values for a given day
into its own series.

Here, we first extract the data belonging to each day in the
original dataset as a separate series and split each of the series
according to the original 70% : 30% ratio. At the end of the
prediction task, all the predicted series of different days of the

week were combined together to form one single prediction.
The main purpose of this approach was to investigate whether
it was possible to achieve better performance through model-
ing each day separately in contrast to using a single model to
encompass all the data in a dataset.

B. MACHINE LEARNING AND DEEP LEARNING MODELS
This section presents a brief overview of all the machine
learning and deep learning models explored in this
study. In total, we consider five machine learning mod-
els (i.e., Linear Regression [9], Auto ARIMA [10], Light
GBM [11], Random Forest [12] and Prophet [13] and
four state-of-the-art deep learning-based time series predic-
tion models–LSTM [14], TCN [15] Transformers [8] and
N-Beats [16] in this work.

1) LINEAR REGRESSION
Linear regression takes a linear approach to model the rela-
tionship between a dependent variable and one or more inde-
pendent variables. Linear regression attempts to estimate a
straight line that best fits the given data and the equation of
that line gives the regression equation. Using one explanatory
variable for regression is called simple linear regression,
which we use as a baseline model to forecast solid waste
generation. Simple linear regression is commonly used in
time series forecasting and also in financial analysis. Multiple
Linear Regression (MLR) is when several explanatory vari-
ables are used for the regression. In this work, we consider a
multiple linear regression model as a forecasting model with
some of the target series’ lag features which are variables in
regression that contains data from earlier time steps. We have
empirically chosen these lag values after tuning the linear
regression model specifically for each dataset.

2) AUTO ARIMA
ARIMA [67] (Autoregressive Integrated Moving Average)
is a time series forecasting model that operates with three
parameters, ARIMA (p, d, q), where; p is the number of
autoregressive terms which refers to past values used to pre-
dict the next value, d is the number of nonseasonal differences
to eliminate the seasonality of time series data, and q is the
number of lagged forecast errors in the prediction equation

TABLE 3. Hyperparameters of the models that were used to impute the missing data.
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FIGURE 3. Leaf-wise tree growth in LightGBM.

used to define the number of past forecast errors used to pre-
dict future values. When training an ARIMA model, statisti-
cal techniques are used to generate these p, d , and q values by
performing the differencing to eliminate the non-stationary
nature of data and plotting the autocorrelation function and
the partial autocorrelation function graphs. In Auto ARIMA,
the model itself generates the optimal p, d , and q values that
would fit the dataset in order to provide the best predictions.

In this study Auto ARIMA model is considered and
implemented as a thin wrapper around pmdarima library,
which provides functionality similar to R’s auto.arima. The
Auto ARIMA model supports the same parameters as the
pmdarima AutoARIMA model.1

3) LIGHT GBM
Light Gradient Boosting Machine [11] also known as Light
GBM is a gradient boosting framework that uses tree-based
learning algorithms. Light GBM shows leaf-wise tree growth.
Since it is based on decision tree algorithms, it divides the
tree by leaf with the best fit, while other boosting algo-
rithms divide the tree by depth or level rather than by leaf.
The leaf-wise algorithm can reduce more losses than the
level-wise algorithm used in other gradient boosting methods
and therefore gives much better precision which can rarely be
achieved by any of the existing boosting algorithms. In addi-
tion, Light GBM is very fast in training.

In our work, we consider a LightGBM implementation of
the Gradient Boosted Trees algorithm as a univariate forecast-
ing model with lag features.

4) RANDOM FOREST
Random Forest is a type of ensemble machine learning algo-
rithm. It can be used for both classification and regression
problems while playing as an extension of bootstrap aggre-
gation of decision trees.

Random Forests are mostly used for classification prob-
lems and predictive regression modeling with structured data
sets. However, they can also be used for time series forecast-
ing, although this requires that the time series first be turned
into a supervised learning problem. It also requires evaluating
the model using walk-forward validation, as evaluating the

1https://alkaline-ml.com/pmdarima/modules/generated/pmdarima
.arima.AutoARIMA.html

model using k-fold cross validation would result in optimisti-
cally biased results.

In this study, we use random forest regression as a fore-
casting model for prediction solid waste generation. It also
uses lag features in order to obtain a forecast. Our Random
Forest implementation is a wrapper around the RandomFore-
stRegressor in sklearn as [68], [69].

5) PROPHET
Prophet is an open source time series forecasting framework
based on the idea of using decomposable models, developed
by Facebook [13]. Unlike the previous models, Prophet
supports the inclusion of the impact of custom seasonality
and holidays. Prophet works with decomposable time series
containing three components; trend, seasonality and holi-
days [70].

The equation of the Prophet is given by, y(t) = g(t)+s(t)+
h(t)+e(t) where, g(t) refers to trend, s(t) refers to seasonality,
h(t) refers to effects of holidays to the forecast, e(t) refers to
the unconditional changes that is scenario specific which is
also called the error term and, y(t) is the forecast.

Prophet is designed to have intuitive settings that can be
adjustedwithout knowing the details of the underlyingmodel.
The approach of modeling seasonality as an additive compo-
nent is same as exponential smoothing [71]. Multiplicative
seasonality, where the seasonal effect is a factor that multi-
plies g(t), can be achieved via a logarithmic transformation.
Prophet only uses time as a regressor but possibly several
linear and non-linear functions of time as components.

We use a wrapper around Prophet implementation in our
experiments. We have only added the optional argument of
holidays for the datasets of Ballarat and Austin, as the Sri
Lankan calendar has not yet been made available in the
library.

6) LSTM
The Long Short-Term Memory (LSTM) [72] is an improved
Recurrent Neural Network (RNN) based model that has
shown promising results with respect to learning long and
short-term relationships in time series data. LSTMs overcome
two major obstacles that RNN’s have had to deal with, which
are vanishing gradients and exploding gradients. LSTM fixes
this by having a gated structure. LSTMs allow RNNs to
remember input over a long time period. This is because
LSTMs hold information in amemory. In addition to handling
long term dependencies, LSTM retain short term information.
The LSTM able to read, write and delete information from its
memory via this gated mechanism.

This memory can be thought of as a gated cell, where gated
means that the cell decides whether to keep or erase infor-
mation (i.e. whether to open the gates or not) depending on
the importance attached to the information. The importance
is assigned via weights, which the algorithm learns. It means
that it learns which information is important and which is not
over the time.
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In an LSTM, there are three gates: input, forgetting and
output gate. These gates determine whether or not to let in a
new input (input gate), suppress information because it is not
important (forgotten gate) or let them assign the output to the
current time step (output gate).

The gates of an LSTM are analog in the form of sigmoids,
which means that they go from zero to one. The fact that they
are analog allows them to do backpropagation. The problem
of vanishing gradients are solvedwith LSTMbecause it keeps
the gradients abrupt enough, which keeps relatively short
training and high accuracy.

7) TEMPORAL CONVOLUTIONAL NETWORKS
Temporal Convolutional Network (TCN) [15] is a specialized
deep learning architecture designed for time series tasks.
TCN is able to extract long-term patterns using dilated
causal convolutions and residual blocks, which may also be
more computationally efficient. This convolution increases
the receptive field of the neural network without resorting to
pooling operations, so there is no loss of resolution [73]. TCN
satisfies two main principles: the network outlet has the same
length as the input sequence, similar to LSTM networks; and
they prevent information leakage from future to the past using
causal convolutions [74].

A common approach to increase the receptive field of the
network is to concatenate several blocks of TCNs. But this
leads to deeper architectures with many more parameters,
which tends to complicate the learning process. For this
reason, residual connections have been proposed by [75] to
improve performance in very deep architectures and consist
of adding the input of a TCN block to its output.

These characteristics make TCN a much more appropri-
ate deep learning architecture for complicated time series
problems. The main advantage of TCNs is that, similar to
RNNs, they can handle variable-length inputs by dragging
or sliding the one-dimensional causal convolutional kernel.
Additionally, TCNs aremorememory-efficient than recurrent
networks due to their shared convolution architecture that
allows them to process long sequences in a parallel way.
But in RNNs, input sequences are processed sequentially,
resulting in higher computation time. In addition, TCNs are
trained with the standard backpropagation algorithm, thus it
avoids the gradient issues of the backpropagation-through-
time algorithm used in RNN [76]. The TCN architecture used
in this study is an implementation of a dilated TCN used for
forecasting, inspired from the experiments done in the work
of [74].

8) TRANSFORMERS
Transformers are the state-of-the-art deep learning model that
is commonly used for natural language processing (NLP)
tasks. Transformers can also be used for time series forecast-
ing tasks as well.

Transformers are an encoder-decoder architecture. Its main
feature is known as a multi-head attention mechanism, which
is able to establish intra-dependencies in the input vector

and in the output vector known as auto-attention, as well as
inter-dependencies between input and output vectors known
as encoder-decoder attention. Themulti-head attentionmech-
anism is highly parallelizable when used with GPUs.

Unlike other sequence-aligned deep learning models,
Transformer do not process data in an orderly fashion.
Instead, it processes the entire data sequence and uses
a self-attention mechanism to learn dependencies in the
sequence. Therefore, Transformer-based models are generic
frameworks that have the ability to model the complex
dynamics of time series data that are difficult for sequence
models.

Reference [77] developed a novel time series forecasting
approach based on Transformer architecture by [78]. Ref-
erence [77] mentioned that the approach works by using
self-attention mechanisms to learn complex and dynamics
patterns from time series data. In our study, we used an
implementation of Transformers architecture based on the
study of [78].

9) N - BEATS
Reference [16] proposed N-BEATS: Neural Basis Expansion
Analysis, a deep neural architecture designed to solve the
univariate times series point forecasting problem using deep
learning. N-BEATS is known as a pure deep learning archi-
tecture in time series forecasting. This model is constructed
using backward and forward residual links and a deep stack of
fully-connected layers for interpretable time series forecast-
ing.

The design of N-BEATS is based on a few key principles.
First, the basic architecture should be simple and generic,
but expressive. Secondly, the architecture should not rely on
feature engineering or input scaling specific to time series.
Finally, the architecture must be extensible to make its out-
puts interpretable by humans.

Reference [16] showed that this architecture is gen-
eral, flexible and it outperforms other models on a wide
range of time series forecasting problems. Reference [16]
demonstrated the state-of-the-art performance in both generic
and interpretable configurations.

This helped in validating two important hypotheses:

1) The generic deep learning approach performs well on
heterogeneous univariate time series forecasting prob-
lems without using time series domain knowledge,

2) It is possible to further coerce a deep learning model
to force it to break down its predictions into distinct
human-interpretable outputs.

In addition, [16] demonstrated that deep learning mod-
els can be trained over multiple time series in a multitask-
ing fashion, successfully transferring and sharing individual
learnings.

Reference [79] presented their work N-BEATS-RNN,
which is an extended version of ensemble of deep learning
networks for time series forecasting, N-BEATS. They applied
the state-of-the-art neural architecture search, based on a
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TABLE 4. Single-model architectures used for each dataset.

fast and efficient weight-sharing search, as a solution for an
ideal Recurrent Neural Network architecture to be added to
N-BEATS. In our study, we used the univariate version of the
implementation of N-BEATS architecture, as outlined in the
study of [16].

VI. EVALUATION
In this section, we present our evaluation for forecasting
solid waste generation bymachine learning and deep learning
models. Additionally, we provide a discussion on important
considerations on choosing an appropriate forecasting model.

A. EXPERIMENTAL SETUP
In our experiments we explored the prediction power of
eight forecasting models across two prediction paradigms,
a single-model approach and a multi-model approach. All
experiments in both single-model and multi-model ensemble
approach considers a multi-step prediction of the last 30%
values in each dataset. All tests were run on a 12-core Ryzen
3900 machine with a base clock speed of 3.1GHz and 32GB

RAM. The models were trained on a Nvidia RTX 2070 Super
GPU with 8 GB GDDR6 VRAM. The implementations for
the machine learning and deep learning models were carried
out using Python and Darts [80], a machine learning library
for Python with a focus on time series forecasting.

Machine learning models were tuned with an exhaustive
grid search heuristic. Deep learning models were manu-
ally tuned to the best of our ability. The parameters of the
best models for the single-model approach and multi-model
approach are in Table 4 and Table 5, respectively. We haven’t
included the parameters for the Prophet and Auto ARIMA
in these tables as they were chosen automatically by the
respective algorithms.

1) EVALUATION METRICS
We used three metrics for the evaluation of the models during
this study– Root Mean Square Error, Mean Absolute Error,
and Mean Absolute Percentage Error. Let yij be the ith test
sample for the jth prediction step where i ∈ [1, k], and ŷij be
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TABLE 5. Multi-model architectures used for each dataset.

the predicted value of yij and k is the number of test samples.
The RootMean Square Error,MeanAbsolute Error andMean
Absolute Percentage Error are given the by Equations 1, 2
and 3 respectively.

RMSEj =

√√√√ k∑
i=1

(ŷij − yij)2

k
(1)

MAEj =
k∑
i=1

|ŷij − yij|
k

(2)

MAPEj =
1
k

k∑
i=1

|ŷij − yij|
yij

(3)

B. EXPERIMENTAL RESULTS
This section will describe the results for the testing
phase of all the experiments conducted during our study.
Figures 4a, 4b, and 4c correspond to the Mean Absolute Per-
centage Error values for the best models for Ballarat, Austin

and Sri Lankan datasets respectively. Table 6, Table 7 and
Table 8 contains the performance of each model on Ballarat,
Austin and Sri Lankan datasets respectively. The tables con-
tain the Root Mean Square Error, Mean Absolute Error and
Mean Absolute Percentage Error values of the best model in
each experiment.

Figure 4a and Table 6 shows the results for Ballarat dataset
for machine learning and deep learning models trained using
the single-model approach and the multi-model ensemble
approach, respectively. As shown in Figure 4a, the Random
Forest model and the N-BEATS model show the best perfor-
mance for single-model and multi-model training approaches
for the Ballarat dataset as 8.3% and 8.47%. Overall, the
single-model Random Forest is the most successful model in
predicting thewaste generation patterns in the Ballarat dataset
with an average improvement of 3.85% against the rest of
the machine learning models and an average improvement of
6.82% against the deep learning-based models.

Prophet also shows strong results for the Ballarat dataset
(i.e., 8.47% inMAPE). For the Ballarat dataset, AutoARIMA
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FIGURE 4. MAPE of the chosen models with different datasets.

and TCN seems to have shown a significant improvement of
over 15% reduction ofMAPEwith themulti-model approach.
Performance of single-model and multi-model approaches
average around MAPE of 15.85% and 10.67% across all
model types. Therefore themulti-model approach has worked
better for the Ballarat dataset.

We see similar variations in MAPE results for Austin
dataset (shown in Table 7 and Figure 4b) where Linear
Regression has obtained the best performance for the Austin
dataset in all scenarios. The error for the results in this
dataset are comparable to the Ballarat dataset. Here, on aver-
age the best Linear regression model outperforms all other
machine learning models by 4.37% and other deep learn-
ing models by 2.46% when considering the single model
approach. As for the multi-model approach Linear regression

is 1.49% greater than machine learning models and 1.96%
greater than deep learning models. Auto ARIMA’s results
have significantly improved by over 12% with the multi-
model approach. LSTM and N-BEATS has shown a decrease
in performance in multi-model approach in comparison
to the single-model training. The single-model approach
shows an average MAPE of 11.07% while the multi-model
approach performed slightly better at an average MAPE
of 9.56%.

Random Forest model shows the best performance for all
Sri Lankan datasets with an average of 32.86% in MAPE
except for the single-model training mode in Boralesga-
muwa dataset. Light GBM shows the best single-model
performance for the Boralesgamuwa dataset (i.e., 28.84% in
MAPE). It is apparent that the Random Forest has been most
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TABLE 6. Forecast error of the models for the Ballarat dataset.

TABLE 7. Forecast error of the models for the Austin dataset.

successful in capturing the patterns in the Sri Lankan datasets,
which didn’t have visible seasonal patterns.

In most cases, training according to the multi-model
approach shows and improvement in predictive performance.
On average, deep learning models haven’t shown a signifi-
cant improvement in prediction for the chosen datasets over
machine learning models. Random forests have been able to
achieve comparable results as the best deep learning model
after a grid search.

C. DISCUSSION
In this section we further discuss three points to consider
when choosing a predictive model for forecasting solid
waste generation, namely 1) seasonality in data 2) the
modeling approach: single-model vs multi-model and
3) choosing between a machine learning vs a deep learning
model.

FIGURE 5. Actual vs predictions for ballarat.

FIGURE 6. Actual vs predictions for moratuwa-sri lanka.

1) EFFECT OF SEASONALITY IN DATA
Overall we observe a lower average predictive error for Bal-
larat and Austin of 13.26% and 10.31% across all models,
irrespective of the approach used (i.e., single or multi-model).
In contrast there is higher error for the Sri Lankan regional
datasets (i.e., average of 25.64%). We attribute this disparity
in predictive performance to the seasonal patterns observed
in Austin and Ballarat.

Figures 5 shows actual vs predictions made for Ballarat
dataset for both best machine learning and deep learning
models. Similarly, Figure 6 shows the actual vs predictions
made for the Moratuwa-Sri Lankan dataset. Both the figures
show the predictions for best performing machine learning
and deep learning model for each dataset considering both
single-model or themulti-model approach. Based on Figure 5
it is clear that predictions made by the models tend to capture
variations more accurately in the presence of seasonality.
In contrast as shown in Figure 6, in a dataset that doesn’t
have seasonality, both the machine learning (Fig 5.a) and
deep learning (Fig 5.b) models have a harder time in learning
temporal patterns. This is a common trend we see in all other
non-seasonal data (i.e., Boralesgamuwa and Dehiwala-Sri
Lankan data).

2) SINGLE-MODEL OR MULTI-MODEL APPROACH
The seasonality in the Ballarat and the Austin datasets
prompted us to explore the utility of exploring a single-model
and amulti-model approach, where themulti-model approach
specifically gives additional focus to the weekly seasonal
patterns that exist within the waste generation of each day
of the week. Our initial assumption was that the multi-model
approach would perform better against data with clear sea-
sonal patterns. Table 10 shows the average RMSE, MAE
and MAPE error considering all the datasets against a
single-model and multi-model approach. Overall, we observe
that the multi-model approach reported slightly better perfor-
mance than the single-model approach (Table 10). However,
while the predictive performance itself shows slight differ-
ences, the biggest difference in choosing to use either of these
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TABLE 8. Forecast error of the models for the Sri Lankan datasets.

FIGURE 7. Average training time for the models across all the datasets.

FIGURE 8. Average MAPE of the models across all the datasets.

TABLE 9. Average performance of machine learning vs deep learning models.

TABLE 10. Average performance of single-model vs multi-model training methods.

approaches comes with the effort and resources in training
these models.

Figure 7 shows the average training time for each of
the best performing models across all datasets. The average
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training time of single-model and multi-model approaches
were was 710.15 seconds and 301.5 seconds. And the aver-
age MAPE values varied as 26.7% and 24.59%. Therefore
the multi-model approach has taken less time to train the
models with better performance. It takes significantly less
time to train the deep learning models using the multi-model
approach than the single-model approach. This is because a
set of smaller models trained according to the multi-model
approach were able to capture the pattern better than one
large model that was trained using the conventional single-
model approach. This directly benefits in reducing the com-
putational cost of the training phase. Therefore, for situations
with higher constraints in time, we believe a multi-model
approach may bemore suitable as it obtains similar predictive
performance while requiring less training time, specifically
for instances where deep learning models are used.

3) MACHINE LEARNING OR DEEP LEARNING
Our experiments considered both machine learning and deep
learning models in order to determine comparatively what
types of models may be more suitable. Figure 8 shows the
average MAPE of each of the models considering all the
datasets. While the deep learning models do shows a slightly
better reduction in error, it is marginal accounting to less than
a decrease of 5% in MAPE. Meaning that there seems to be
less utility in using deep neural network architectures for this
forecasting task (i.e., summarized in Table 9).

In addition, the deep learning models take a significantly
longer time in training than the machine learning models.
As shown in Table 9 on average, the deep learning models
have taken 54× times more time to train than the machine
learning models. All the machine learning models were
trained on the CPU, where as the deep learning models were
trained on a dedicated GPU. The machine learning models
were trained with relatively less computational cost than the
deep learning models, adding to the utility of using machine
learning-based models.

We consider datasets spanning different time periods.
The longest spanning dataset Austin contains the records
of 14 years. The smallest dataset is the Moratuwa dataset
which spans only for 3 years. For both these datasets, the
performance of the best machine learning model and the best
deep learningmodel varies by less than 2%MAPE. Therefore
we can conclude that the length of the dataset is not a sig-
nificant factor contributing to the design choice of selecting
a machine learning or deep learning model. It seems like
both model types work equally well for long-term (i.e., more
than 10 years) or shorter-term (i.e., around 2-3 years) time
periods of data. While it can be argued that a deep learning
model might be able to predict the waste data generation of
a much larger dataset with better accuracy, it may not be
realistic to assume that the same waste generation patterns
could exist for a time period beyond 15 years due changing
in urban populations, waste management policies that could
be implemented within such a long period of time.

We have used a grid search method to train the machine
learning models. The deep learning models were trained
manually with extreme care. Therefore the machine learning
models have presented a greater advantage in being able to
be trained in environments with less supervision and skilled
personal than deep learning models.

While machine learning models on average have slightly
outperformed the deep learning models, deep learning mod-
els have outperformed machine learning models on several
occasions. However the performance improvement of the
deep learning models have come at a much greater computa-
tional cost. Therefore it is apparent that the machine learning
models are specifically well suited for developing regions
such as Sri Lanka where there exist limitations in modeling
waste data such as lack of computational power and skilled
personals.

VII. CONCLUSION
In this paper, we investigated how well the machine learn-
ing and the state-of-the-art deep learning models are able
to forecast daily waste amount of five different geograph-
ical areas. We compared the performance of nine different
machine learning and deep learning models across all the five
datasets. In our study, we observe comparable results in both
machine learning and deep learning models, while machine
learning models on average have slightly outperformed the
deep learning models. However deep learning models have
taken more computational power during the training phase.
Therefore we can conclude that machine learning models are
sufficient for forecasting municipal solid waste in a given
geographical location. Furthermore the training time has been
reduced by using the multi-model training paradigm. Also
results shows that It also contributed to a slight increase of
performance as well.
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