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A B S T R A C T

Unmanned Ariel Vehicles (UAVs) require identifying water surfaces during flight maneuvers, mainly for safety
in execution and its applications. We introduce two novel techniques to identify water surfaces from front-
facing and downward-facing cameras mounted on a UAV. The first method — UNet-RAU, a unique architecture
based on UNet and Reflection Attention Units, segments water pixels from front-facing camera views, utilizing
the reflection property of water surfaces. On the On-Road and Off-Road datasets of Puddle-1000, UNet-RAU
improved its performance by 2% over the state-of-the-art FCN-RAU. Additionally, the UNet-RAU generated
an F1-score of 80.97% on our Drone-Water-Front dataset. The second method — Dense Optical Flow based
Water Detection (DOF-WD), detects water surfaces in videos of downward-facing cameras. This method utilizes
downwash-generated ripples and natural texture features on a water surface to identify water in low and
high altitudes, respectively. We empirically validated the performance of the DOF-WD method using our
Drone-Water-Down dataset.
1. Introduction

Identification of water surfaces is crucial for Unmanned Ariel Ve-
hicle (UAV)’s safety [1] and for applications such as detecting water
retention areas [2], assisting in water quality management systems [3],
and aiding ground vehicles to map upcoming terrains [1]. For a UAV
itself, identifying safe flight paths and determining suitable landing
grounds is crucial since its electronics can be damaged when in contact
with water. The identification task can be challenging as water surfaces
possess no exact shape or color, and the appearance of water changes
due to various factors like viewing angle, surrounding scene, and
weather conditions.

This research provides two separate approaches to identifying water
surfaces based on the camera orientation, i.e. (1) when the camera is
facing forward: to identify upcoming water surfaces, and (2) when it
is facing downward: to identify water surfaces located under the UAV
(see Fig. 1).

We used UNet-RAU, a unique image segmentation technique based
on deep learning, for the task of identifying water surfaces using a
front-facing camera of a UAV. To the best of our knowledge, deep
learning-based segmentation techniques have not been tested for water
puddle detection in drone imagery. When observed from a distance
parallel to the ground, a water surface functions similarly to a mirror,
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reflecting the surrounding environment. This unique characteristic of
water surfaces was utilized in this research to improve the performance
of deep-learning models.

We carried out our evaluations on the Puddle-1000 [4] dataset and
our own Drone-Water-Front (DWF) dataset. The puddle-1000 dataset
consists of three sub-datasets: On-Road (ONR), Off-Road (OFR), and
ONR-OFR combined (BOTH). It contains images of water puddles cap-
tured using a front-facing camera of a Unmanned Ground Vehicle
(UGV). Our proposed UNet-RAU combination achieved F1-scores of
80.11% and 84.0%, On-Road, and Off-Road datasets respectively, out-
performing the state-of-the-art FCN-RAU [4] in the water detection
task.

In order to validate the UNet-RAU in the UAV context, we have
curated a novel dataset named Drone-Water-Front (DWF), compris-
ing annotated images of various water surfaces captured by a front-
facing camera mounted on a drone. UNet-RAU achieved an F1-score
of 80.97% on the DWF, supporting evidence for the suitability of
UNet-RAU architecture in identifying water surfaces through drone
imagery.

We proposed Dense Optical Flow based Water Detection (DOF-WD)
techniques to identify water surfaces using a downward-facing camera
of a UAV. We used two optical-flow-based methods, namely the Water-
Ripples and the Water-Texture, both based on Farnebäck [5] Dense
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Fig. 1. UAV flight maneuvers performed during the data collection process. Image A:
Capturing images using a front-facing camera. In this scenario, UAV was flown in the
forward direction with a speed ranging from 1–5 ms-1 while maintaining an altitude
between 1–5 m. Image B: Capturing videos using a downward-facing camera while
hovering. Here the UAV hovered in a low altitude range of 1–2 m. Image C: Capturing
videos using a downward-facing camera while moving forward. Here the UAV was
flown in the forward direction with a speed ranging from 1–5 ms-1 while maintaining
an altitude between 10–30 m.

Optical Flow algorithm. Using the proposed methods, we identified
water surfaces in two scenarios: Firstly, when the drone hovers in
low altitudes (1–2 m), the downwash of the drone generates ripples
on the water surface. We identified these water surfaces using optical
flow patterns of ripples with the Water-Ripples technique. Secondly,
when the UAV moves in high altitudes (10–30 m), ripples are not
getting generated on the water’s surface. However, when the UAV
moves forward, the non-water surfaces show an optical flow in the
opposite direction of the UAV. Such movement is not visible on water
surfaces due to their uniform texture as seen from higher altitudes.
Based on these observations we identified stationary water surfaces in
high-altitude videos using the Water-Texture approach.

To evaluate the effectiveness of DOF-WD techniques, we created the
Drone-Water-Down (DWD) dataset, which consists of videos captured
by a drone’s downward-facing camera at different altitudes.

Our contribution through this work is as follows.

1. We investigate the combination of UNet [6] with the Reflection
Attention Unit (RAU) for the purpose of detecting water surfaces
situated in front of UAVs. As a result, we propose a novel
architecture named UNet-RAU.

2. We propose Dense Optical Flow based Water Detection (DOF-
WD), a methodology for identifying water surfaces located be-
neath UAVs. This approach utilizes optical flow patterns of
ripples in lower altitudes and the uniform texture properties of
still-water surfaces in higher altitudes.

3. We introduce a new dataset named Drone-Water (DW), which
contains images and videos of water surfaces captured by drones
at various altitudes and camera orientations. The Drone-Water-
Front (DWF) sub-dataset includes annotated images captured
using a drone’s front-facing camera, while the Drone-Water-
Down (DWD) sub-dataset consists of videos captured using a
drone’s downward-facing camera.
2

2. Related work

2.1. Water surface identification using ground vehicles

Water surface identification has been mainly conducted for ground
vehicles [4,7–12] since water puddles generate risks for both vehicles
and their passengers [4]. Water leakages can damage a vehicle’s inter-
nal circuitry and cause accidents like skidding, crashes, and drowning
risking passenger lives.

Matthies et al. [10] have compared four sensor types namely color
images, Lidar, Short Wave Infrared (SWIR), and Mid Wave Thermal
Infrared (MWIR) to detect water surfaces using UGVs. Sky conditions
as clear, partly cloudy, and overcast were considered to detect water
surfaces in color images. In this research, Lidar detected the depth of a
water body, while SWIR detected whether the surface is water, snow,
or ice. MWIR detected water at night.

Rankin et al. [12] visually detected water surfaces by localizing the
sky’s reflection pixels below the horizon level based on color similarity
and visual features of the terrain.

Rankin and Matthies [11] utilized far-range reflections of the sky as
a strong cue for water. At close ranges, the color coming out of a water
body dominated sky reflections. In [11], a stereo-vision perception
system on a UGV was used. This detector worked on the principle that
the change in saturation to brightness ratio across a water body from
the leading to trailing edge is uniform and distinct from other terrain
types. Rankin and Matthies [11] method suited best for water bodies
in wide open areas.

2.1.1. Multi-cue approach
Daytime water detection technique which uses a fused multi-cue

approach was presented by Rankin et al. [7] for autonomous off-road
navigation. Color, texture, and reflections in stereo-range data were
considered as cues to detect water. When using hue, saturation, and
value (HSV) color space, water surfaces that reflect the sky consist of
low saturation values and high brightness values, while deep bodies
of water consist of high blue hue counts. Texture cue targeted water
regions having low textures in grayscale images. In the range cue,
range reflections in images obtained from a pair of color cameras were
utilized. Finally, all the cues were fused together based on a rule base.

Mettes et al. [13] developed an algorithm that uses a hybrid descrip-
tor based on both spatial and temporal local behavior of water surfaces
in videos. Inputs were captured using a color camera sensor. Spatial
behavior was characterized by using local binary pattern histograms
while temporal behavior was quantified using temporal brightness
signals of local patches. Findings were evaluated on two data sets,
namely, Water database [13] and DynTex database [14].

Mettes et al. [15] segmented to detect water in videos by analyzing
several motion properties of water. A new database named Video Water
database was introduced by Mettes et al. [15].

2.1.2. Polarization
The light coming from the sky which is non-polarized gets partially

linearly polarized when reflected from a water surface. Nguyen et al.
[8] detects water using 3D stereo cameras by considering the polariza-
tion of light off a water surface that changes from that of from sky,
represented by the function of azimuth and reflection angles, accom-
panied with considerations to the color variation of light. Xie et al. [9]
proposed a polarization-based water hazard detection technique for off-
road navigation. By using 0◦, 45◦, and 90◦polarization filters mounted
in front of three cameras, three images are captured simultaneously to
calculate the phase image followed by partial polarization. Afterward,
an adaptive threshold-based segmentation algorithm and morphologi-
cal filters have been applied to the phase image that identifies water as
having phase-similar phases.

Polarization is another feature that was used by researchers to
identify water surfaces [7–9]. The light coming from the sky is non-
polarized. Once it gets reflected from a water surface, it becomes
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partially linearly polarized. In the 3D approach of Nguyen et al. [8],
they used polarized stereo cameras to capture the input. Xie et al.
[9] proposed a polarization-based water hazard detection technique for
off-road navigation.

2.2. Water surface identification using drones

Pombeiro et al. [1] proposed an active vision-based water detection
model based on optical flow patterns in downward-looking camera
images induced by the down-wash effect on the water surface during
vertical and take-off and landing of UAV. This assists the UAV to
identify suitable landing grounds.

Ridolfi and Manciola [16] proposed a technology that uses a sensing
platform, which encompasses a drone and a camera to determine the
water level. Images obtained from the sensing platform were analyzed
using the Canny method to detect the edges of the water level. Ground
control points were used as reference points. The water level is then
retrieved from images and compared to a benchmark value obtained
by a traditional device.

2.3. Water surface identification using satellites

Remote sensing literature provides information on orbital satellites
used to investigate ground settings. Those satellites normally take
inputs perpendicular to the ground [17–20].

However, water detection which uses space-borne remote sens-
ing is challenging. Spatio-temporal scale issues, integration with in-
situ-hydro-logical data and elevation data, and obscuration caused
by clouds and vegetation [21] are among them. Several space-borne
missions have addressed this situation with some special sensors such as
Moderate Resolution Imaging Spectrometer (MODIS)[21], SPOT VEG-
ETATION (VGT)[21], the Thematic Mapper (TM)[17], and Enhanced
Thematic Mapper Plus (ETM+)[17].

2.4. Advancements in deep learning related water surface identification

Han et al. [4] developed a single image deep learning approach
to detect water puddles using a Fully Convolutional Network (FCN).
Researchers combined FCN with a special unit called Reflection At-
tention Unit (RAU) [4] to improve its performance. The assumption
for RAU is that the reflections in an image lie in a vertical line.
The FCN-8s was utilized as the FCN, and focal loss was used as the
loss function. They introduced a new dataset named Puddle-1000 and
used it for evaluations. The proposed approach outperforms Gaussian
Mixture Model (GMM) with polarizers, and DeepLab-V2 [22]. FCN-
8s integrated with focal loss function and 5 reflection attention units
(FCN-8s-FL-5-RAU) was presented as their finest model.

Li et al. [23] introduced a method for pixel-level sea–land segmenta-
tion, which uses a unique Deep Convolutional Neural Networks (DCNN)
named DeepUNet [23], which has been derived from UNet. A new
dataset called the sea–land dataset [23] was introduced for evaluations.
Researchers compared the findings of DeepUNet [23] with UNet and
SegNet, where it concluded DeepUNet [23] performs better.

A method to detect water lines in images captured from a moving
camera mounted on an autonomous boat was introduced by Steccanella
et al. [24]. A FCN for obtaining a pixel-wise image segmentation was
used. Experiments were conducted on the IntCatch Vision dataset [24]
which contained images and videos with multiple floating obstacles on
water.

Wang and Wang [25] used a Conditional Generative Adversarial
Networks (cGAN) to tackle water hazard detection. An investigation
was carried out as to where to place the proposed RAU by Han
et al. [4] in different layers of cGAN. The best configuration was
presented as cGAN-mRAU. Re-annotated Puddle-1000 dataset [25] was
used for evaluations. cGAN outperformed on OFR subset and cGAN-
mRAU outperformed on ONR and ONR and OFR combined (BOTH)
3

subsets compared to FCN-8s-FL-5-RAU [4] in F1-measure. s
3. Proposed method

We propose the following two methodologies for identifying the
water surfaces.

1. UNet-RAU — Identifying water surfaces located in front of a
UAV using image streams captured from a UAV’s front-facing
camera.

2. DOF-WD — Identifying water surfaces located underneath a
UAV using videos captured from a UAV’s downward-facing cam-
era.

3.1. Identifying water surfaces located in front of the UAV

3.1.1. UNet
Originally designed for biomedical image segmentation, the UNet [6]

architecture was chosen for water surface identification due to its
ability to effectively train with a smaller number of images and its faster
training process [6], which is particularly advantageous in resource-
constrained environments.

The architecture of the network consists of two main components:
the concatenating path and the symmetric expanding path. The con-
catenating path focuses on capturing contextual information, while the
symmetric expanding path is responsible for precise localization. The
contracting path comprises two consecutive 3 × 3 unpadded convo-
lutions, each followed by a Rectified Linear Unit (ReLU) activation
function. Subsequently, a 2 × 2 max pooling operation with a stride of 2
s applied for downsampling. At each down-sampling step, the number
f feature channels is doubled.

During the expansive path, the feature maps are upsampled using
× 2 convolutions, which reduces the number of feature channels

y half. These upsampled feature maps are then concatenated with
he corresponding cropped feature maps from the contracting path.
ollowing this, two additional 3 × 3 convolutions are applied, followed
y ReLU activation. In the final layer, a 1 × 1 convolution is employed
o map each 64-component feature vector to the desired number of
lasses. The Adam optimizer with a learning rate of 1e-6 is utilized,
nd the binary cross-entropy function is employed as the loss function.

.1.2. UNet-RAU
We extended the original UNet architecture by incorporating RAU

odules. In the downsampling path, RAUs were inserted after the two
onvolutional layers and before the max-pooling layer. Similarly, in
he upsampling path, RAUs were positioned after the up-convolutional
ayer and before the concatenation with the contracting path. The
esulting modified architecture, named UNet-8-RAU, is illustrated in
ig. 2.

.2. Identifying water surfaces located underneath the UAV

Optical Flow (OP) characterizes the motion of objects across consec-
tive frame sequences, arising from the relative movement between the
bject and the camera. Within the context of OP, the intensity image,
enoted as 𝐼 , is defined as a function of spatial coordinates (𝑥, 𝑦) and

time (𝑡). As the intensity at a specific location (𝑥, 𝑦) changes by 𝛥𝑥
and 𝛥𝑦 over a time interval 𝛥𝑡, a new intensity image, 𝐼 ′, emerges. A
oundational assumption in this context is that the intensity of an object
emains consistent across successive frames, as articulated in Equation
.

(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦, 𝑡 + 𝛥𝑡) (1)

In our two approaches Water-Ripples and Water-Texture, we uti-
ized Farnebäck [5] Dense Optical Flow (DOF) method to identify
ater surfaces. It is a two-frame motion estimation algorithm based
n polynomial expansion. In DOF, the flow vectors of all the pixels
re calculated. Although this method is computationally slower, we

elected it because of its high accuracy.
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Fig. 2. Proposed UNet-8-RAU Architecture.

3.2.1. In low altitudes
When a UAV hovers over a water surface, the down-wash generates

ripples on the surface. These ripples show a circular-like outward
motion from the pivot point.1 This was observed during take-off and
landing by Pombeiro et al. [1]. In their approach, a histogram of sparse
optical flow orientation was generated and it was compared against a
model histogram.

Inspired by their work, we tested out detecting water surfaces
located under the UAV, using the ripples generated by the down-wash
induced during hovering. An algorithm was proposed based on the
assumption that on a water surface, the downwash creates ripples that
move in all directions from the pivot point. In this method, the angle
and magnitude of the flow vectors of each pixel were calculated. Using
the calculated values, moving pixels were selected by thresholding the
magnitude. Out of the moving pixels, their moving directions were
categorized into 8 bins. If each bin exceeds a pixel count of 1% of
frame pixels, then the frame is considered as a frame with water. This
algorithm was named as Water-Ripples.

3.2.2. In high altitudes
It was observed that when a UAV moves at a higher altitude, the

ground seems to move in the opposite direction relative to the UAV.
However, water surfaces do not show this movement due to their
uniform texture, which is visible from higher altitudes.

An algorithm was proposed based on the assumption that when a
UAV moves at a higher altitude, the ground moves in the opposite
direction of the UAV while the water surface remains static. In this
method, the angle and magnitude of the flow vectors of each pixel were
calculated. Using the calculated values, moving pixels were selected by
thresholding the magnitude. Moving pixels were labeled as the ground
pixels while the rest were categorized as water pixels. We named this
algorithm as Water-Texture.

4. Datasets

We introduced a new dataset named Drone-Water for the evaluation
process of the proposed methodologies. It contains two sub-datasets

1 point on the water surface vertically underneath the UAV
4

named Front and Down based on the camera orientation which was
used to capture inputs. We used a DJI Phantom-04 and a DJI Mavic
Mini (Gen-1) drone in the data collection process.

When evaluating the performance of deep learning models, we used
two datasets namely Puddle-1000 and Drone-Water-Front. It contains
119 annotated images (1920 𝑥 1080 resolution) of different water
surfaces taken from a drone’s front-facing camera. These images were
extracted from videos taken from a drone, mounted with a front-facing
camera that was flown at an altitude range between 1–5 m, with a
speed of 1–5 ms-1.

To evaluate the performance of the DOF-WD method, we used the
Drone-Water-Down dataset. It contains videos of different surfaces like
water, land, and water–land combined taken from a drone’s downward-
facing camera. Videos of this dataset are of 1920 𝑥 1080 resolution
with a 30/60 fps. In the DOF-WD low altitude method, the drone was
hovering at a static altitude between 1–2 m. In the DOF-WD high
altitude method, the drone was flown forward at a speed of 1–5 ms-1

while maintaining a static altitude between 10–30 m.

5. Implementation

Implementation, training, and testing of deep learning models and
the evaluation of DOF technique was performed on a Ryzen 3900X,
with an NVIDIA 3090 and 64 GB of RAM.

6. Experiments

6.1. Identifying water surfaces located in front of the UAV

We evaluated the performance of UNet combined with different
numbers of RAU units. These models were named UNet-X-RAU mod-
els. Here X is the number of RAUs combined with the UNet, and X
was assigned with the values of 4, and 8. We evaluated the UNet-X-
RAU combinations using Puddle-1000 and our own Drone-Water-Front
dataset. This experiment was conducted to analyze how the RAU units
contribute to improving the efficiency UNet in water detection tasks.

We selected our best-performing UNet-X-RAU combination and
compared the performance with UNet++ [26], DeepLabV3+ [27], and
the state-of-the-art FCN-8s-FL-5-RAU [4] in water identification.

During the experimental phase, the UNet, UNet-X-RAU, UNet++,
and DeepLabV3+ models were trained for 0.5 K epochs on 352 𝑥 640
image resolution. Models were implemented using Tensorflow 2.11,
and data augmentation was not applied to the training data. The results
for FCN-8s-FL-5-RAU in Table 2 were obtained from Han et al. [4]
paper which was trained for 60 K iterations on 360 𝑥 640 image
resolution.

6.2. Identifying water surfaces located underneath the UAV

6.2.1. In low altitudes
We evaluated the proposed Water-Ripples method on low-altitude

videos. These videos were taken by a drone, mounted with a downward-
facing camera that hovered over water, land, and water–land combined
surfaces. Considering the safety of the drone from water surfaces,
1 m was selected as the lower altitude limit. We gradually increased
the altitude of the drone and evaluated the behavior of the proposed
algorithm at each level.

6.2.2. In high altitudes
Evaluation of the Water-Texture method was performed on high-

altitude videos. Videos were captured using a drone, mounted with
a downward-facing camera that was flown in the forward direction
over water, land, and water–land combined surfaces while maintaining
a static altitude. In compliance with local government restrictions of
the experimental area, 30 m was selected as the upper altitude limit.
We gradually decreased the flying altitude and evaluated the behavior
of the proposed algorithm at each level. The speed of the drone was
maintained between 1–5 ms-1 to preserve the video clarity.
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Table 1
Evaluation of UNet [6] when combined with different numbers of RAU units on ONR,
OFR, and Drone-Water-Front(DWF) datasets.

Dataset Architecture Resolution Accuracy Precision Recall F1-Measure

ONR
UNet

352 × 640
98.88 51.34 85.9 64.27

UNet-4-RAU 99.17 75.63 79.33 77.44
UNet-8-RAU 99.22 78.2 82.11 80.11

OFR
UNet

352 × 640
99.34 93.84 72.96 82.09

UNet-4-RAU 99.35 91.2 76.8 83.37
UNet-8-RAU 99.34 88.98 79.56 84.0

DWF
UNet

352 × 640
99.14 75.98 77.95 76.95

UNet-4-RAU 99.23 79.41 81.47 80.43
UNet-8-RAU 99.23 79.44 82.57 80.97

7. Results and evaluation

7.1. Identifying water surfaces located in front of the UAV

A pixel-wise evaluation was performed on the model when gener-
ating results. We calculated four evaluation metrics namely, Accuracy,
Precision, Recall, and F1-score (macro). Accuracy and F1-score were
calculated for both water and non-water pixels while precision and
recall were calculated only for water pixels. Precision indicates the
number of correctly predicted water pixels out of all predicted water
pixels. Recall indicates the number of correctly predicted water pixels
out of all actual water pixels.

Table 1 shows the accuracy, precision, recall, and F1-scores of
UNet combined with different number of RAU units: UNet-4-RAU, and
UNet-8-RAU. Among the above UNet-X-RAU combinations, UNet-8-
RAU performed best with F1-scores of 80.11%, and 84.0%on ONR, and
OFR datasets respectively, further improving the performance of UNet.
The UNet-8-RAU generated an F1-score of 80.97% on the Drone-Water-
Front dataset, which was a 1% improvement over UNet. Results depict
that UNet-8-RAU is most suitable for identifying water surfaces in UAV
imagery.

Table 2 shows the results of UNet-8-RAU, UNet++ [26], DeepLabV3
+ [27], and FCN-8s-FL-5-RAU [4] on On-Road, Off-Road, and Drone-
Water-Down datasets. UNet-8-RAU outperformed ONR and OFR datasets
in F1-score by 8% and 2% respectively, when compared with the
state-of-the-art FCN-8s-FL-5-RAU [4] architecture.

Table 3 shows the cross-dataset validation,2 of each model on
Drone-Water-Front dataset against ONR OFR datasets.

7.2. Identifying water surfaces located underneath the UAV

7.2.1. In low altitudes
During the experiments, it was observed that when the altitude

of the UAV was increased gradually from 1 m, down-wash decreases
resulting in a gradual decrease in the formation of visible water rip-
ples. Depending on the drone models used in our experiments, the
maximum altitude at which the drones generated clear visible water
ripples was around 3 m. Based on our observations we selected 2 m
as the upper altitude limit. Therefore the Water-Ripples algorithm was
successful in identifying water surfaces in the 1–2 m altitude range.
Fig. 3 shows the water detection by the proposed method when the
altitude increased from 1 m to 5 m. Furthermore, we observed that
if natural wind currents flow beneath the UAV, it will distraught the
down-wash reaching the water surface. As a result ripples were not
getting generated, making it difficult to be recognized as a water or
non-water surface.

2 Training on one dataset and testing on another dataset.
5

Fig. 3. Dense optical flow observed at different altitudes when a UAV hovering over
a water surface. In this experiment, the altitude of the UAV was increased gradually
from rows 1 to 6. Rows 1–3 contain frames captured at altitudes between 1–3 m, while
rows 4–6 contain frames captured at altitudes between 4–5 m. Column A shows the
original image, column B shows the detected water pixels (in blue color), and Column
C shows water pixels based on the moving directions.

7.2.2. In high altitudes
When we gradually decreased the altitude from 30 m to around

5 m altitude range, water ripples started appearing on the water’s
surface. That is at low altitudes, the downwash of the drone generates
water ripples distorting the uniform texture of water. Based on our
observations, the drone models used, and to eliminate unexpected
ripples we selected 10 m as the lower altitude limit. Therefore the
proposed Water-Texture algorithm was successful in identifying water
surfaces in the 10–30 m altitude range. Fig. 4 indicates water detection
by the proposed algorithm at different altitude ranges. Fig. 5 shows the
results over different water–land surfaces.

8. Discussion

When identifying water surfaces using a front-facing camera of a
UAV, the UNet-RAU combination is suitable when the water surface
is still, which will reflect the surrounding environment clearly. In
contrast, when natural wind currents flow over a water surface it
distorts the surface reflections making the identification task difficult.

Based on our observations, detecting underlying water surfaces
using the Water-Ripples technique depended on several factors, (1) the
altitude at which it was being hovered, (2) the type of the UAV being
used, and (3) the effect of natural wind currents on the water surface.

The Water-Texture method can be extended up to 5 m as the lower
altitude limit but the drone should be flown at higher speeds over the
water surface, i.e. the frame should be captured before the downwash
reaches the water surface. Furthermore, we propose investigating the
proposed Water-Texture method combined with a thermal camera,
to reduce false detection of non-water uniform texture surfaces like
carpeted roads in the video streams.
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Table 2
Evaluation of UNet-8-RAU with UNet++ [26], DeepLabV3+ [27], and FCN-8s-FL-5-RAU [4] on ONR, OFR
and Drone-Water-Front(DWF) datasets. (Results of FCN-8s-FL-5-RAU were taken from Han et al. [4] original
work).
Dataset Architecture Resolution Accuracy Precision Recall F1-Measure

ONR

UNet-8-RAU 352 × 640 99.22 78.2 82.11 80.11
UNet++ 352 × 640 98.85 67.49 68.96 68.22
DeepLabV3+ 352 × 640 98.81 67.73 61.81 64.64
FCN-8s-FL-5-RAU [4] 360 × 640 99.35 67.78 72.61 70.11

OFR

UNet-8-RAU 352 × 640 99.34 88.98 79.56 84.0
UNet++ 352 × 640 98.83 67.53 65.37 66.42
DeepLabV3+ 352 × 640 98.83 68.73 62.13 65.27
FCN-8s-FL-5-RAU [4] 360 × 640 99.38 87.21 76.79 81.67

DWF
UNet-8-RAU 352 × 640 99.23 79.44 82.57 80.97
UNet++ 352 × 640 98.8 67.53 62.42 64.87
DeepLabV3+ 360 × 640 98.85 69.49 62.68 65.91
Table 3
Cross dataset validation of Drone-Water-Front(DWF) dataset with ONR, OFR datasets.
Train Test Architecture Resolution Accuracy Precision Recall F1-Measure

ONR DWF

UNet

352 × 640

87.83 7.41 29.82 11.87
UNet-4-RAU 92.8 9.05 17.91 12.03
UNet-8-RAU 92.76 10.32 21.15 13.85
UNet++ 91.58 8.98 22.53 12.84
DeepLabV3+ 92.02 9.04 20.95 12.63

OFR DWF

UNet

352 × 640

91.17 7.77 20.26 11.16
UNet-4-RAU 93.45 10.63 18.62 13.53
UNet-8-RAU 92.6 10.21 21.66 13.88
UNet++ 91.95 8.99 21.11 12.61
DeepLabV3+ 92.14 9.11 20.69 12.65
Fig. 4. Water detection at different altitude ranges using the Water-Texture method.
The UAV was flown in the forward direction, with the camera oriented downwards.
Rows 1 and 4 represent water detection in 2–5 m, 5–10 m, 10–20 m, and 20–30 m
altitude ranges respectively. Column A represents the original image while column B
represents the segmented image generated from the proposed algorithm. Detected water
pixels are indicated in red color.
6

Fig. 5. Water detection over different terrains using the Water-Texture method. The
UAV was flown in the forward direction, with the camera oriented downwards. Column
A shows the original image while column B shows the segmented image generated by
the proposed algorithm. Column C shows the ground truth image. Water pixels are
shown in red color.

9. Conclusion

We investigated the UNet-RAU combination and Dense Optical
Flow techniques in identifying water surfaces from front-facing and
downward-facing camera views, respectively. When identifying water
surfaces located in front of a UAV using a front-facing camera, re-
flections off a water surface were observed as a unique characteristic.
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UNet-8-RAU was evaluated using the Puddle-1000 dataset [6] and
achieved an F1-score of 80.11% on ONR, and 84.0% on OFR sub-
datasets. It was an improvement of F1-scores by 8% on ONR and
2% on OFR datasets over the state-of-the-art FCN-8s-FL-5-RAU [6]
combination. We extended the evaluation of UNet-8-RAU architec-
ture on the Drone-Water-Front dataset and achieved an F1-score of
80.97%, indicating the applicability of the proposed architecture on
UAV imagery.

When identifying water surfaces located underneath a UAV us-
ing videos captured by downward-facing cameras, we identified two
unique characteristics of water: ripples and uniform texture, which
can be utilized in low-altitude and high-altitude water identification
tasks, respectively. At lower altitude ranges, ripple formation by the
downwash of the UAV was analyzed. It was discovered that the Water-
Ripples method was successful in detecting water surfaces underneath
the UAV at an altitude range of 1–2 m. When detecting water surfaces
at high altitude ranges, the Water-Texture method generated promising
results for the altitude range of 10–30 m. The Water-Texture method
utilized the uniform texture property visible on water surfaces at such
high altitudes.

In conclusion, the proposed methodologies provide promising ap-
proaches to detect water surfaces in front of a UAV and underneath a
UAV. The new Drone-Water dataset will be made publicly available and
we believe that the findings of this research merit further investigations
in this domain.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] R. Pombeiro, R. Mendonca, P. Rodrigues, F. Marques, A. Lourenco, E. Pinto, P.
Santana, J. Barata, Water detection from downwash-induced optical flow for a
multirotor UAV, in: OCEANS 2015 - MTS/IEEE Washington, (September) 2016.

[2] C. Suduwella, A. Amarasinghe, L. Niroshan, C. Elvitigala, K. De Zoysa, C.
Keppetiyagama, Identifying mosquito breeding sites via drone images, in: DroNet
2017 - Proceedings of the 3rd Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications, co-located with MobiSys 2017, (June) 2017, pp.
27–30.

[3] C. Koparan, A.B. Koc, C.V. Privette, C.B. Sawyer, In situ water quality measure-
ments using an unmanned aerial vehicle (UAV) system, Water 10 (3) (2018)
264.

[4] X. Han, C. Nguyen, S. You, J. Lu, Single Image Water Hazard Detection
Using FCN with Reflection Attention Units: 15th European Conference, Munich,
Germany, September 8–14, 2018, Proceedings, Part VI, 2018, pp. 105–121,
http://dx.doi.org/10.1007/978-3-030-01231-1_7.
7

[5] G. Farnebäck, Two-frame motion estimation based on polynomial expansion, in:
J. Bigun, T. Gustavsson (Eds.), Image Analysis, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003, pp. 363–370.

[6] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 9351, 2015, pp. 234–241.

[7] A.L. Rankin, L.H. Matthies, A. Huertas, Daytime water detection by fusing
multiple cues for autonomous off-road navigation, in: Transformational Science
and Technology for the Current and Future Force: (with CD-ROM), World
Scientific, 2006, pp. 177–184.

[8] C.V. Nguyen, M. Milford, R. Mahony, 3D tracking of water hazards with polarized
stereo cameras, in: Proceedings - IEEE International Conference on Robotics and
Automation, 2017, pp. 5251–5257.

[9] B. Xie, Z. Xiang, H. Pan, J. Liu, Polarization-based water hazards detection for
autosnomous off-road navigation, in: IEEE International Conference on Intelligent
Robots and Systems, 2007, pp. 3186–3190.

[10] L.H. Matthies, P. Bellutta, M. McHenry, Detecting water hazards for autonomous
off-road navigation, Unmanned Ground Veh. Technol. V 5083 (1) (2003) 231.

[11] A. Rankin, L. Matthies, Daytime water detection based on color variation, in:
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS
2010 - Conference Proceedings, 2010, pp. 215–221.

[12] A.L. Rankin, L.H. Matthies, P. Bellutta, Daytime water detection based on sky
reflections, in: Proceedings - IEEE International Conference on Robotics and
Automation, 2011, pp. 5329–5336.

[13] P. Mettes, R.T. Tan, R. Veltkamp, On the segmentation and classification of water
in videos, in: VISAPP 2014 - Proceedings of the 9th International Conference on
Computer Vision Theory and Applications, 1, (November) 2014, pp. 283–292.

[14] R. Peteri, S. Fazekas, M. Huiskes, DynTex: A comprehensive database of dynamic
textures, Pattern Recognit. Lett. 31 (2010) 1627–1632.

[15] P. Mettes, R.T. Tan, R.C. Veltkamp, Water detection through spatio-temporal
invariant descriptors, Comput. Vis. Image Underst. 154 (2017) 182–191.

[16] E. Ridolfi, P. Manciola, Water level measurements from drones: A Pilot case
study at a dam site, Water (Switzerland) 10 (3) (2018).

[17] L. Bertels, B. Smets, D. Wolfs, Dynamic water surface detection algorithm applied
on PROBA-V multispectral data, Remote Sens. 8 (12) (2016).

[18] S. Elhassan, X. Wu, J.P. Walker, Standing Water Detection Using Radar,
(December) 2013, pp. 1–6.

[19] D.E. Alsdorf, Geophysics: Tracking Fresh Water from Space, Science 301 (5639)
(2003) 1491–1494.

[20] D.R. Lyzenga, Shallow-water bathymetry using combined lidar and passive
multispectral scanner data, Int. J. Remote Sens. 6 (1) (1985) 115–125.

[21] J.F. Pekel, C. Vancutsem, L. Bastin, M. Clerici, E. Vanbogaert, E. Bartholomé,
P. Defourny, A near real-time water surface detection method based on HSV
transformation of MODIS multi-Spectral time series data, Remote Sens. Environ.
140 (2014) 704–716.

[22] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, DeepLab: Se-
mantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution,
and Fully Connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018)
834–848.

[23] R. Li, W. Liu, L. Yang, S. Sun, W. Hu, F. Zhang, W. Li, DeepUNet: A Deep Fully
Convolutional Network for Pixel-Level Sea-Land Segmentation, IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 11 (11) (2018) 3954–3962.

[24] L. Steccanella, D. Bloisi, J. Blum, A. Farinelli, Deep learning waterline detection
for low-cost autonomous boats, Adv. Intell. Syst. Comput. 867 (2019) 613–625.

[25] L. Wang, H. Wang, Water Hazard Detection Using Conditional Generative
Adversarial Network with Mixture Reflection Attention Units, IEEE Access 7
(2019) 167497–167506.

[26] Z. Zhou, M.M.R. Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested U-net
architecture for medical image segmentation, 2018, arXiv:1807.10165.

[27] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with
atrous separable convolution for semantic image segmentation, in: ECCV, 2018.

http://refhub.elsevier.com/S1047-3203(23)00183-9/sb1
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb1
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb1
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb1
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb1
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb2
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb3
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb3
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb3
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb3
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb3
http://dx.doi.org/10.1007/978-3-030-01231-1_7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb5
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb5
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb5
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb5
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb5
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb6
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb7
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb8
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb8
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb8
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb8
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb8
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb9
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb9
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb9
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb9
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb9
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb10
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb10
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb10
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb11
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb11
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb11
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb11
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb11
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb12
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb12
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb12
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb12
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb12
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb13
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb13
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb13
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb13
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb13
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb14
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb14
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb14
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb15
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb15
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb15
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb16
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb16
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb16
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb17
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb17
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb17
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb18
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb18
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb18
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb19
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb19
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb19
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb20
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb20
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb20
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb21
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb22
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb23
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb23
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb23
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb23
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb23
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb24
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb24
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb24
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb25
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb25
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb25
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb25
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb25
http://arxiv.org/abs/1807.10165
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb27
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb27
http://refhub.elsevier.com/S1047-3203(23)00183-9/sb27

	Detecting Water in Visual Image Streams from UAV with Flight Constraints
	Introduction
	Related Work
	Water Surface Identification using Ground Vehicles
	Multi-Cue Approach
	Polarization

	Water Surface Identification using Drones
	Water Surface Identification using Satellites
	Advancements in Deep Learning Related Water Surface Identification

	Proposed Method
	Identifying water surfaces located in front of the UAV
	UNet
	UNet-RAU

	Identifying water surfaces located underneath the UAV
	In low altitudes
	In high altitudes


	Datasets
	Implementation
	Experiments
	Identifying water surfaces located in front of the UAV
	Identifying water surfaces located underneath the UAV
	In low altitudes
	In high altitudes


	Results and Evaluation
	Identifying water surfaces located in front of the UAV
	Identifying water surfaces located underneath the UAV
	In low altitudes
	In high altitudes


	Discussion
	Conclusion
	Declaration of competing interest
	Data availability
	References


